INDIAN SCHOOL MUSCAT

FIRST PRE-BOARD EXAMINATION

February 2021

SET A

CLASS XII

Marking Scheme – CHEMISTRY [THEORY]

Q.NO.	Answers	Marks
		(with split
		up)
1.	i. b	1x4=4
	ii. c	
	iii. c	
	iv. c (OR) b	
2.	i. c	1x4=4
	ii. a	
	iii. a	
	iv. b/a	
3.	None of the answer is correct -6.023×10^{16}	1
4.	a	1
5.	C	1
6.	b	1
7.	d	1
8.	c/d	1
9.	d	1
10.	d/d	1
11.	d/d	1
12.	b/d	1
13.	a	1
14.	b	1
15.	b	
16.		1
17.	a)Definition	1+1
	b)F-centre	
18.	$1000 \times K_f \times W_B$	2
	$M_{\rm B} = \frac{\Delta T_f \times W_{\rm A}}{\Delta T_f \times W_{\rm A}}$	
	$= 1000 \mathrm{K kg^{-1}} \times 1.86 \mathrm{K kg mol^{-1}} \times 15 \mathrm{g}$	
	$=\frac{0.34 \text{K} \times 450 \text{ g}}{0.34 \text{K} \times 450 \text{ g}}$	
	= 182.35 g/mol	

19.	$pH = 2$: $[H^+] = 10^{-2}$	2			
	$\mathbf{r_0} = \mathbf{K} \left[10^{-2} \right]^{\mathbf{n}}$				
	at pH = 1, $[H^+]$ = 10 ⁻¹				
	$r_1 = K \left[10^{-1} \right]^n \qquad \frac{r_1}{r_0} = 100 = \left[10 \right]^n$				
20.	\therefore n = 2	1/2			
20.	$t_{99.9\%} = \underbrace{2.303}_{k} \underbrace{\log 100}_{0.1}$	$\begin{vmatrix} 72 \\ 1 \end{vmatrix}$			
	$t_{50\%} = \frac{2.303}{100} \log 100$				
	k 50				
	$\underline{t_{99.9\%}} = \underline{2.303 \times 3} \times \underline{k}$	1/2			
	t _{50%} k x0.693				
	t99.9% =10 t50%				
21.	a) Brown ring test equation	1			
21.	b) Equation of thermal decomposition of sodium azide	1			
22.	a) d ² sp ³ ,diamagnetic,octahedral	2			
	OR				
	i. Dichloridobis(ethylenediamine)cobalt(III) chloride				
22	ii. [CO(NH ₃) ₅ (ONO)] ^{2+.}	1+1			
23.	;C1: OH	2			
	(a) No OH 443K				
	(i) NaOH, 443K				
	(ii) H [⊕]				
	NO_2 NO_2				
	a) b) Correct structure				
24.	a) Hexane is formed	1+1			
	b) Ethanol is formed				
	OR	1.1			
	a) 1-chloropentane-more surface area of contact, vanderwaals force of	1+1			
	attraction b) They are enantiomers				
	o) They are chanciomers				
25.	a)Etards reaction- (Equations)	2			
26.	b)Decarboxylation $4r = \sqrt{2}a$ $a = 2\sqrt{2}r = 2x1.414x127.8 = 361.4 \text{ pm}$	¹ / ₂ +1/2			
20.	71	/2 1/2			

	d =			
	$4x 63.5 = 8.94 \text{ g/cm}^3$			
	$\begin{array}{c} -6.94 \text{ g/cm} \\ (361.4)^3 \text{x} 10^{-30} \text{ x} 6.02 \text{ x} 10^{23} \end{array}$			
27.	a) no d-d transitions	3		
27.	b) Mn is in+2 oxidation state in MnO and +7 in Mn ₂ O ₇			
	c) Due to ability of o to form multiple bonds			
	OR			
	a) Ce, oxidizing agent	1/2+1/2		
	b) lanthanoid contraction, any one consequence.	1/2+1/2		
28.	structure of:	1x3		
	 a) BrF₃ -T shaped b) Hypochlorous acid - c) XeF₂-Linear 			
29.	i. Hofmanns bromamide reaction ii. Reduction -LiAlH ₄	1 1		
	b) (CH ₃) ₃ N, C ₂ H ₅ NH ₂ , C ₂ H ₅ OH OR			
	a) When treated with Hinsberg's reagent dimethylamine being a 2 ⁰ amine gives N,N-dimethyl benzene sulphonamide which is insoluble in aqueous KOH solution while trimethyl amine being a 3 ⁰ amine does not react	1		
	with Hinsberg's reagent. b) But-2-en-2-amine	1		
	c) electron donating nature of the amine group which increases the electron density on the benzene ring	1		
30.	a) Anomers (Definitions)b) Native proteinc) Nucleoside	1x3		
31.		1x3		
	 i. This is because the lone pairs on oxygen atom attached to hydrogen atom in the -COOH group are involved in resonance thereby making the carbon atom less electrophilic. ii. carboxylic group is strongly deactivating. AlCl 3 gets attached to COOH 			
	strongly			

	iii. Acetic anhydride used to prevent oxidation of benzaldehyde to benzoic acid. b)		
	i. By Aldol condensation		
	іі. СНЗМ	gBr&Oxdn	
	OR		
	a) i. CH3CC ii. CHI3+l iii. RCHB1	RCOONa	1x3
		OCH ₃ , CH ₃ COCH ₃ , CH ₃ CHO	1
	c) C ₆ H ₅ C0	OCH ₃	1
32.	· · · · · · · · · · · · · · · · · · ·	nstant-definition t electrolysis so that concentration of ions in the solution	11/2
	_	s constant.	11/2
	=-0.76	$= \frac{95}{100} \times 0.1 = 0.095 \text{ M}$ $n^{2+}/Zn = -0.76 - \frac{0.0591}{2} \log \frac{1}{0.095}$ $6 - 0.02955 (\log 1000 - \log 95)$ $6 - 0.0295 (3 - 1.9777) = -0.79021 \text{ V}$	1
		OR	
	b)	Kohlrauschs law Oxidation potential of Br-, H ₂ O,F- are in the following order.Br- > H ₂ O >F- $\Lambda_m = \frac{1 \times 1000}{200 \times 0.01} \text{ S cm}^2 \text{ mol}^{-1}$	1
	c)	500 S cm ² mol ⁻¹	

	$= \Lambda_m^0(NH_4Cl) + \Lambda_m^0(NaOH) - \Lambda_m^0(NaCl)$ $= 129.8 + 218.4 - 108.9$ $= 239.3Scm^2mol^{-1}$ $\alpha = \frac{\Lambda_m(NH_4OH)}{\Lambda_m^0(NH_4OH)}$ $= \frac{9.33}{239.3} = 0.039$	
33.	a)i. OH bonds are stronger than SH bonds.	5
	ii. The products of hydrolysis are XeOF4 and XeO2 F2 where the	
	oxidation states of all the elements remain the same	
	b)	
	i. $C_{12}H_{22}O_{11}+H_2SO_4 \rightarrow 12C+11H_2O$	
	ii. $3Cu + 8 HNO_3(dilute) \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$	
	iii. $2Ca(OH)_2 + 2Cl_2 \rightarrow Ca(OCl)_2 + CaCl_2 + 2H_2O$	
	OR	
	a)	
	i. 5NaCl + NaClO ₃ + 3H ₂ O	
	ii. XeF6 + O2b) Decolourises acidified potassium permanganate solution;	
	c) Due to the ease with which it liberates atoms of nascent oxygen	
	d) it acts as a powerful oxidising agent	